

Z90341DIGITAL TELEVISION CONTROLLER

FEATURES

Part	OTP	RAM	Speed	
Number	ROM	(Word)	(MHz)	
Z90341	64K x 16	1K x 16	12	

- 52-Pin Shrink DIP Package
- 4.5- to 5.5-Volt Operating Range
- Z89C00 RISC Processor Core
- 0°C to +70°C Temperature Range

- Direct Closed Caption Decoding
- TV Tuner Serial Interface
- Customized Character Set
- Character Control Mode
- Directly Controlled Receiver Functions
- V-Chip Decode

GENERAL DESCRIPTION

The Z90341 is a member of Zilog's family of Digital Television Controllers designed to provide complete audio and video control of television receivers, video recorders, and advanced on-screen display facilities.

The Z90341 features a powerful Z89C00 RISC processor core that controls on-board peripheral functions and registers using the standard processor instruction set.

In closed caption mode, text can be decoded directly from the composite video signal and displayed on the screen with assistance from the processor's digital signal processing capabilities. The character representation in this mode allows for a simple attribute control through the insertion of control characters.

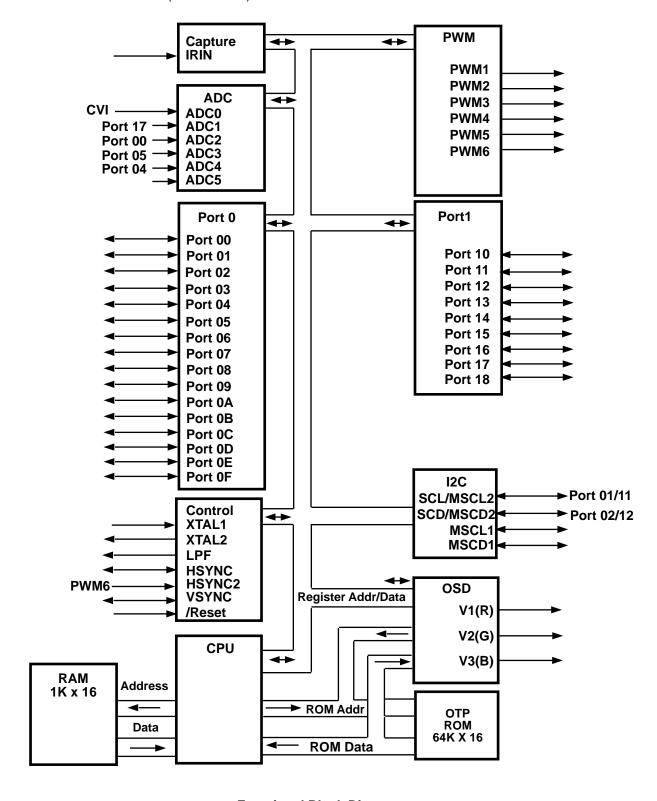
The character control mode provides access to the full set of attribute controls. The modification of attributes is allowed on a character-by-character basis. The insertion of control characters permits direction of other character attributes.

Display attributes, including underlining, italics, blinking, eight foreground/background colors, character position offset delay, and background transparency, are made possible through a fully customized 512 character set.

Serial interfacing with the television tuner is provided through the tuner serial port. Digital channel tuning adjustments may be accessed through the industry-standard I^2C port.

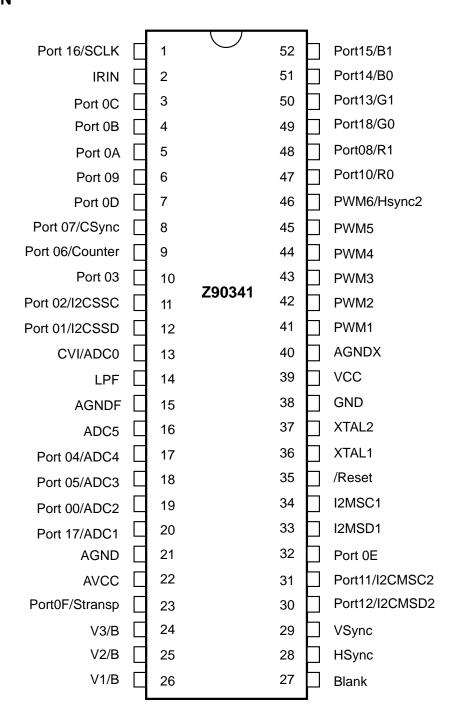
Additional hardware provides the capability to display two to three times normal size characters. The smoothing logic contained in the on-screen display circuit improves the appearance of larger fonts. Special circuitry can be activated to improve the visibility of text by adding a right-sided shadow effect to the characters.

Receiver functions such as color and volume can be directly controlled by six 8-bit pulse width modulated ports.


Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:


Connection	Circuit	Device
Power Ground	V _{cc} GND	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$

GENERAL DESCRIPTION (Continued)

Functional Block Diagram

PIN DESCRIPTION

52-Pin Shrink DIP Configuration

CP97TEL2500 3

PIN DESCRIPTION

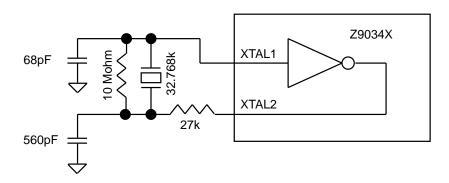
Z89313

Pin Name	Function	Z90341 (52-Pin	Configuration Direction	Reset
V _{CC} , AV _{CC} ^a GND, AGND, AGNDF, AGNDX ^b	+5 V 0 V	39,22 38,21,15,40	PWR PWR	-
IRIN ADC[5:1]	Infrared Remote Capture Input 4-Bit Analog-to-Digital Converter Input	2 16,17,18,19,20	I Al	
PWM[6:1]	8-Bit Pulse Width Modulator Output	46,45,44,43,42,41	Ο	0
Port0[F:0]	Bit Programmable Input/Output Ports	23,32,7,3,4,5,6,48,8,9,18 17,10,12,11,19	3, В	I
Port1[8:0]	Bit Programmable Input/Output Ports	49,20,1,52,51,50,30, 31,47	В	I
SCL SCD	I ² C Clock I/O I ² C Data I/O	11,31,34 12,30,33	BOD BOD	
XTAL1 XTAL2	Crystal Oscillator Input Crystal Oscillator Output	36 37	AI AO	0
LPF	Loop Filter	14	AB	0
HSYNC VSYNC	H_Sync V_Sync	28,46 29	B B	l I
/RESET	Device Reset	35	I	1
V[3:1]	OSD Video Output (Typically Drive B, G, and R Outputs)	24,25,26	0	0
Blank Semi transparent	OSD Blank Output OSD Semi transparent Output	27 23	O O	0
SCLK	Internal Processor SCLK	_	0	

Please refer to pin-out diagram for shared pin numbers.

a) AV_{CC} is for the reference voltage of the ADC input.

b) AGND is for the reference ground of the ADC input.


AGNDF is for LPF ground, and AGNDX is for XTAL circuit ground.

V1, V2, V3 ANALOG OUTPUT Specifications $V_{CC} = 5.25 \text{ V}$

V _{cc} = 5.25 V	Condition	Limit
Output Voltage	Bit = 11 Bit = 10 Bit = 01 Bit = 00	$2.10 \text{ V} \pm 0.3 \text{ V}$ $1.75 \text{ V} \pm 0.3 \text{ V}$ $1.28 \text{ V} \pm 0.30 \text{ V}$ 0.0 + 0.3 V
Setting Time	70% of DC Level, 10pf Load	< 50 ns

V1, V2, V3 ANALOG OUTPUT Specifications $V_{CC} = 4.75 \text{ V}$

V _{cc} = 4.75 V	Condition	Limit
Output Voltage	Bit = 11 Bit = 10 Bit = 01 Bit = 00	1.90 V ± 0.30 V 1.60 V ± 0.30 V 1.20 V ± 0.30 V 0 V + 0.3 V
Setting Time	70% of DC Level, 10pf Load	< 50 ns

32K Oscillator Recommended Circuit

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units	Conditions
V_{CC}	Power Supply Voltage Input Voltage	0 -0.3	7 V _{cc} +0.3	V V	Digital Inputs
V _{IA} V _O I _{OH} I _{OH} I _{OL}	Input Voltage Output Voltage Output Current High Output Current High Output Current Low Output Current Low	-0.3 -0.3	V _{cc} +0.3 V _{cc} +0.3 -10/-1 ^a -100 20/1 ^b 200	V V mA mA mA	Analog Inputs (A/D0A/D4) All Push-Pull Digital Output One Pin All Pins One Pin All Pins
T _A	Operating Temperature Storage Temperature	0 –65	70 150	°C	

a) 1 mA max. when output pad impedance is 600 $\Omega_{\rm \cdot}$

b) 1 mA max. when output pad impedance is 600Ω .

DC CHARACTERISTICS $T_A = 0^{\circ}\text{C to} + 70^{\circ}\text{C}; V_{CC} = 4.5 \text{ V to} + 5.5 \text{ V}; F_{OSC} = 32.768 \text{ KHz}$

Symbol	Parameter	Min	Max	Typical	Units	Conditions
$\overline{V_{\shortparallel}}$	Input Voltage Low	0	0.2 V _{CC}	0.4	V	
V _{IH}	Input Voltage High	0.6 V _{CC}	V _{cc}	3.6	V	
V	Output Voltage Low		0.4	0.16	V	@ I _{OI} = 1 mA
${ m V}_{ m OH}$	Output Voltage High	V_{CC} -0.9		4.75	V	$@I_{OL}^{OL} = 0.75 \text{ mA}$
V_{XL}	Input Voltage XTAL1 Low		0.3 V _{CC}	1.0	V	External Clock
V _{XH}	Input Voltage XTAL1 High	V _{CC} -2.0 3.0	00	3.5	V	Generator Driven
VHY	Schmitt Hysteresis	3.0	0.75	0.5	V	On XTAL1 Input Pin
I	Reset Input Current		150	90	μΑ	$V_{RL} = 0 V$
$\overline{I_{\parallel}}$	Input Leakage	-3.0	3.0	0.01	μΑ	@ 0 V and V _{cc}
Icc	Supply Current		100	60	mA	
I _{CC1}	Supply Current		300	100	μΑ	Sleep Mode @ 32 KHz
I _{CC2}	Supply Current		40	5	μA	Stop Mode

AC CHARACTERISTICS

 $T_A = 0$ °C to + 70°C; $V_{CC} = 4.5$ V to 5.5 V; $F_{OSC} = 32.768$ KHz

Symbol	Parameter	Min	Max	Typical	Units	Note
T _P C T _R C,T _F C	Input Clock Period Clock Input Rise and Fall	16	100	32 12	μs μs	
T _D POR	Power On Reset Delay	0.8		1.2	S	Depends on Crystal

AC CHARACTERISTICS*

 $T_A = 0$ °C to + 70°C; $V_{CC} = 4.5$ V to 5.5 V; $F_{OSC} = 32.768$ KHz

Symbol	Parameter	Min	Max	Typical	Units
T _w RES T _D H _s	Power-On Reset Min. Width H_Sync Incoming Signal Width	5.5	5TPC 12.5	11	μs μS
T_DV_S T_DE_S	V_Sync Incoming Signal Width Time Delay Between Leading Edge of V_Sync and H_Sync in Even Field	0.15 -12	1.5 +12	1.0 0	ms µs
T_DO_S	Time Delay Between Leading Edge of H_Sync in Odd Field	20	44	32	μs
T_wHV_s	H_Sync/V_Sync Edge Width		2.0	0.5	μs

Notes:

All timing of the I^2C bus interface are defined by related specifications of the I^2C bus interface.

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056

Internet: http://www.zilog.com

CP97TEL2500 7